Introducing…

...a newsletter focusing on education and research in neurological surgery and related disciplines. Under the leadership of chairman Mitchel S. Berger, the Department of Neurological Surgery at UCSF, carrying on the special legacy of its history, is committed to communicating with practitioners in the community who are interested in neurosurgical research and education. This newsletter has been launched as one step in meeting that commitment.

Contents

Harold Rosegay PHD MD Library & Conference Center Dedicated	1
Looking to the Future	2
Focus on Faculty	3
Research with New Instrumentation Technology	4
Residents-Gazette	6
News Briefs	8
Upcoming Events at UCSF	9
Administrative Appointments	9
Faculty Achievements	9
Neurosurgery’s Nurses Honored	9
Sharon Lamb Awarded The UCSF Department of Neurological Surgery Distinguished Service Award	10
Academic and Clinical Conferences	10
Selected Recent Publications	11
Strides in Clinical Care	12
Textbook of Gliomas Debuts	12
Web Site	12

Harold Rosegay PHD MD Library & Conference Center Dedicated in a Day of Lectures and Recollection

On 16 July 1998 the Department had the honor of dedicating the Harold Rosegay PhD MD Library and Conference Center, named for a Professor Emeritus of Neurological Surgery whose counsel and teaching has for decades been a mainstay for residents taking their neurosurgical training at UCSF. The celebration included a dedication address given by Dr Rosegay and presentations by many former residents, who returned to UCSF to take part in the day. The celebration was followed by a reception and buffet dinner in Dr Rosegay’s honor.

The Colonel, as his residents would call him with respect and affection, joined the faculty of the UCSF Department of Neurological Surgery in 1972. His distinction as a teacher of medical students as well as neurosurgery residents is reflected in his receiving several prestigious awards, including UCSF’s Harvey J. Kaiser Award for Excellence in Teaching in 1994, the Outstanding Contribution to the Education of Neurology Residents award in...
Over the past year, we’ve done a lot of work at UCSF to improve our programs and services. I’m glad to report that, through all the changes, we’ve been successful in keeping our academic neurological surgery program strong, and I wanted to share with you the highlights of our educational efforts and research. At the core of our academic program is our diverse and productive faculty. This newsletter introduces seven new faculty members who have expanded our academic range, revitalizing UCSF’s pediatric neurological surgery program and adding an important dimension of expertise to our clinical programs, particularly in the areas of cerebrovascular disease, movement disorders, brain and spinal cord injury, and complex spinal disorders.

Our residency program continues to attract top young neurosurgery candidates. Working and studying long hours are just part of the “drill” for neurosurgery residents, but the young people featured in this newsletter have gone the extra mile, with innovative work that will change for the better the way neurosurgery is practiced in the future.

The Department’s Brain Tumor Research Center (BTRC), incorporating the clinical Neuro-Oncology Program, continues to offer state-of-the-art therapy and clinical trials for children and adults with brain tumors. Highlighted in this issue are aspects of both the BTRC’s basic science research into the biological basis of brain tumors and the work ongoing in our Center for Neurological Injury and Repair (CNIR), with research into the mechanisms of epilepsy, movement disorders, cerebrovascular disorders, and trauma. Basic scientists are being recruited to broaden and enrich our research programs - in the CNIR in the areas of epilepsy and CNS injury and repair, and in the BTRC in the areas of tumor invasion, angiogenesis, genomics, gene therapy, and tumor vaccines.

I hope you find something of particular interest to you in this newsletter. I would enjoy hearing from you about articles you would like to see in future issues and information you would like to know about the work of the Department of Neurological Surgery at UCSF.

Mitchel S. Berger MD
Chairman
been the examination of genes whose expression is regulat-
ed during the course of nervous system differentiation and oncogenes and tumor suppressor genes whose structure and expression is altered in brain tumors. A program has also been initiated to develop novel approaches to the manage-
ment of brain tumors through gene transfer technologies.
Work is in progress to develop strategies that involve the
delivery of toxic metabolites to tumor cells by cells that are
specifically targeted to neoplastic tissues.

Research Advances in Spasticity,
Epilepsy, & Hydrocephalus

Dr. Warwick Peacock, who joined the UCSF faculty as Pro-
fessor and Chief of the Pediatric Neurological Surgery
Program in 1997, is recognized internationally for his contri-
butions to neurophysiological research and the neurosurgi-
cal management of movement disorders in children.
Formerly Chief of Pediatric Neurosurgery at the University of
Cape Town and then at UCLA School of Medicine, Dr. Peacock
developed a safe, effective surgical procedure now widely
used to treat spasticity in children who have cerebral palsy.
He also has an international reputation for his clinical and
basic work in the areas of epilepsy and hydrocephalus.

Selective Posterior Rhizotomy
With improved survival rates for premature infants during the
1970s, prevalence of the spastic type of cerebral palsy
increased. Dr. Peacock took a neurosurgical approach to the
problem, adapting the posterior rhizotomy procedure that
has been used for nearly 100 years. His technique, selective
posterior spinal rootlet section, permitted neurosurgeons to
relieve spasticity in selected patients. Reporting a series of 20
children undergoing surgery with this technique, he noted
that it improves function in children with cerebral palsy;
both those who are intelligent and able to walk and those who are
mentally retarded and severely spastic; children with severe
athetosis or marked contractures improve the least. A long-
term study confirmed the substantial benefit for spastic chil-
dren, but showed that great care must be taken in appropriate
selection. Dr. Peacock recently has described standard methods for nerve rootlet testing and selection through intraoperative electromyographic (EMG) monitoring. Documenting complications of selective posterior rhizotomy in 105 children treated, he found no life-threatening events nor any with potential for lasting morbidity, and there were no instances of surgical complications.

Epilepsy

Dr. Peacock initially proposed justification for early hemispherectomy in appropriately selected children with intractable seizures associated with hemiplegia. He evaluated a personal series of 58 children who over a decade underwent anatomic, functional, or modified anatomical hemispherectomy for control of intractable seizures, motor function, and complications. Among the 50 patients followed for more than 1 year, he found an 88% reduction in seizure frequency. Motor function of hemiparetic extremities was improved or unchanged after surgery in 76% of patients. Complications included one intraoperative death, one late death from shunt obstruction managed elsewhere, late postoperative seizure requiring reoperation and further disconnection in five patients, mild CSF infection in three, and hydrocephalus requiring shunting in three patients. A controlled clinical trial of 24 infants with spasm showed that 5-year developmental outcomes after resection were best for children who had surgery while they were relatively young and had the highest level of developmental attainments before surgery.

"Surgical treatment of epilepsy has made possible basic research into the mechanisms of epileptogenesis."

Surgical treatment of epilepsy has made possible basic research into the mechanisms of epileptogenesis. Dr. Peacock and colleagues have shown data to indicate that the intrinsic electrical properties of neocortical neurons from children vary according to cell morphology and change with increasing age; they detected no obvious evidence of epileptogenicity in the intrinsic electrical properties of neocortical neurons closely resemble those observed in experiments in animals. The mechanisms of neuronal communication are qualitatively normal, even in the most abnormal tissue from children with catastrophic epilepsy.

Hydrocephalus

Dr. Peacock’s review of his series of 440 children treated for hydrocephalus in Cape Town showed that in South Africa the most common cause was meningitis, both bacterial and tuberculous; followed by congenital anomalies and brain tumors. The metabolic changes that occur in a newborn’s brain as a result of hydrocephalus and the response to ventriculoperitoneal shunting vary with the maturational stage of the brain. In studies to estimate local glucose utilization (LCMRglu) and oxidative metabolic capacity in a hydrocephalus model, Dr. Peacock and colleagues found data suggesting that when the brain is compromised by hydrocephalus, there is an initial compensatory increase in oxidative metabolic capacity. The development of the glycolytic pathway appears to be retarded by hydrocephalus, but with shunting and the passage of time, the LCMRglu rebound to levels above that of control. Other studies indicate that increased ICP in hydrocephalus affects the mechanism of removal of the serotonin metabolite 5-HIAA and the dopamine metabolite HVA from the CSF.

Research with New Instrumentation Technology

Assistant Professor of Neurological Surgery & BTRC Associate Dr. Michael McDermott, who co-directs the UCSF Gamma-Knife Radiosurgery Program, has recently begun research to develop three malignant meningioma cell lines from a collection of 25 frozen malignant meningioma specimens. He and his colleagues have been successful in immortalizing the cell lines and are applying for funding to develop an animal model for malignant meningioma and to do in vitro testing of several powerful drugs that may have activity against malignant meningioma such as platelet-derived growth factor (PDGF) inhibitors and vascular endothelial growth factor inhibitors (VEGF). This next phase for development of the animal tumor model and in vitro testing of drugs should take one year; thereafter testing of the drugs in the animal model would be a preclinical phase to human clinical trials.

Currently, malignant meningiomas, which constitute 15% of all meningiomas, are resistant to conventional chemotherapeutic and to date no effective treatment has been found. The aim of this research would be to provide patients with recurrent malignant meningiomas with an additional form of effective treatment. Dr. McDermott is also in the second year of a prospective trial comparing magnetic resonance spectroscopy with tumor pathologic specimens and comparative genomic hybridization. The aim is to provide further information based on stereotactic imaging correlation using intraoperative navigational devices such as the ISG wand so that spectroscopy, tumor pathology, and genomic variability can be correlated. This will help strengthen the relationship between spec-
troscopy and imaging and pathology that currently exists. Potentially, at some point in the future, spectroscopy may be a diagnostic tool for tumors of a high degree of sensitivity and specificity is shown with this study.

A number of papers have come out through the Radiosurgery Program at UCSF encompassing radiosurgery for melanoma, survival after radiosurgery from melanoma, and results of radiosurgery for renal cell carcinoma. The effectiveness of radiosurgery for pain conditions associated with tumors of the cavernous sinus has been reviewed and is very encouraging with greater than 90% of patients experiencing pain relief. This latter report will soon be submitted for publication.

Future projects include a combined study of tumor-cyst control associated with hemangioblastomas to be done in cooperation with the Stanford Radiation Oncology Program and a review of the results of radiosurgery for breast cancer brain metastases. In the area of endoscopy and hydrocephalus, Dr. McDermott and resident Philipp Theodosopoulos MD are reviewing data for more than 50 patients who had endoscopic placement of ventricular catheters to evaluate the catheter position and patency of shunts with this minimally invasive technique. Dr. McDermott notes that “The advantage of endoscopic placement of ventricular catheters to evaluate the catheter position and patency of shunts with this minimally invasive technique. Dr. McDermott notes that “The advantage of endoscopic placement of ventricular catheters to evaluate the catheter position and patency of shunts with this minimally invasive technique.” He adds that “Experience has demonstrated that there have been errors in ventricular catheter, as opposed to previously when anatomic landmarks alone and the presence of CSF flow indicated an intraventricular position.”

This latter report will soon be submitted for publication.

Dr. McDermott’s Selected Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization</td>
<td>Peacock WJ</td>
<td>Brain 119(Pt3):865-887, 1996</td>
<td></td>
</tr>
<tr>
<td>Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients</td>
<td>Peacock WJ</td>
<td>Brain 120(Pt11):1937-1959, 1997</td>
<td></td>
</tr>
</tbody>
</table>

Dr. Israel’s Selected Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraventricular position.</td>
<td>Peacock WJ</td>
<td>Childs Nerv Syst 5:146-152, 1989</td>
<td></td>
</tr>
<tr>
<td>Experience has demonstrated that there have been errors in ventricular catheter, as opposed to previously when anatomic landmarks alone and the presence of CSF flow indicated an intraventricular position.</td>
<td>Peacock WJ</td>
<td>Childs Nerv Syst 5:146-152, 1989</td>
<td></td>
</tr>
</tbody>
</table>

Dr. Peacock’s Selected Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
</tr>
</thead>
</table>

ganglia, as seen with heat shock protein production and fluoro-staining. Currently, he is performing pharmacologic testing to see if pretreatment can decrease the observed damage. This work may help to reduce morbidity in patients who have subarachnoid hemorrhage.

During his research year, Daniel Lieberman has pursued research on parkinsonism that he began at NIH before starting his residency. Although effective medications are available to treat Parkinson’s disease, for patients who cannot tolerate or develop tolerance to them, the most effective neurosurgical therapy is destruction of the globus pallidus—a normal nucleus that mediates the symptoms of parkinsonism. No specific movement disorder results from its destruction but its neurosurgical ablation endangers the adjacent optic tract and internal capsule in such a way that targeting the most effective area for treating Parkinson’s disease risks partial blindness, possibly paralysis, and in some people dementia. Previously Dr. Lieberman has shown that infusion of the neurotoxin kainic acid to the globus pallidus in rhesus monkeys selectively destroyed neurons but had no effect on the internal capsule or optic tract and reversed experimental Parkinson’s syndrome. Kainic acid has been noted that abnormal development of the human hippocampus has been implicated in the generation of epilepsy, neurosurgery resident Aviva Abosch has focused her research on the normal development of the mammalian hippocampus as a means of gaining insight into aberrant brain development and, hence, epileptogenesis. Dr. Abosch has been especially interested in the role of netrins—a family of diffusible axon guidance molecules—in establishing both intrinsic and extrinsic hippocampal projections. This work has involved the use of embryonic and early postnatal hippocampal explants, embedded in a three-dimensional collagen matrix, and co-cultured with netrin-secreting COS cells. The development of this assay system has allowed ready quantitation of hippocampal neurite outgrowth in response to the netrins. These studies suggest that netrins play a role in the early development of specific sub-regions of the hippocampus.

Eldan Eichbaum, a 1998 graduate of the neurological surgery residency program, has focused his research on immunohistologic and histologic changes in the brain following endovascular subarachnoid hemorrhage. He has found that damage occurs diffusely in the cortex and basal ganglia, as seen with heat shock protein production and fluoro-staining. Currently, he is performing pharmacologic testing to see if pretreatment can decrease the observed damage. This work may help to reduce morbidity in patients who have subarachnoid hemorrhage.

During his research year Daniel Lieberman has pursued research on parkinsonism that he began at NIH before starting his residency. Although effective medications are available to treat Parkinson’s disease, for patients who cannot tolerate or develop tolerance to them, the most effective neurosurgical therapy is destruction of the globus pallidus—a normal nucleus that mediates the symptoms of parkinsonism. No specific movement disorder results from its destruction but its neurosurgical ablation endangers the adjacent optic tract and internal capsule in such a way that targeting the most effective area for treating Parkinson’s disease risks partial blindness, possibly paralysis, and in some people dementia. Previously Dr. Lieberman has shown that infusion of the neurotoxin kainic acid to the globus pallidus in rhesus monkeys selectively destroyed neurons but had no effect on the internal capsule or optic tract and reversed experimental Parkinson’s syndrome. Kainic acid has been noted that abnormal development of the human hippocampus has been implicated in the generation of epilepsy, neurosurgery resident Aviva Abosch has focused her research on the normal development of the mammalian hippocampus as a means of gaining insight into aberrant brain development and, hence, epileptogenesis. Dr. Abosch has been especially interested in the role of netrins—a family of diffusible axon guidance molecules—in establishing both intrinsic and extrinsic hippocampal projections. This work has involved the use of embryonic and early postnatal hippocampal explants, embedded in a three-dimensional collagen matrix, and co-cultured with netrin-secreting COS cells. The development of this assay system has allowed ready quantitation of hippocampal neurite outgrowth in response to the netrins. These studies suggest that netrins play a role in the early development of specific sub-regions of the hippocampus.

Eldan Eichbaum, a 1998 graduate of the neurological surgery residency program, has focused his research on immunohistologic and histologic changes in the brain following endovascular subarachnoid hemorrhage. He has found that damage occurs diffusely in the cortex and basal
The American College of Surgeons Committee on Trauma has awarded first place in its 1997 Resident Research Competition to Geoff Manley. Dr. Manley, who received his MD and a PhD in molecular neuroscience from Cornell University, is co-investigator in the San Francisco Injury Center at SFGH. He received the award for experimental research showing that dramatic changes in cerebral oxygen concentration take place in response to hyperventilation and hypoventilation, and that direct monitoring of cerebral oxygen levels provides a new endpoint for the treatment for cerebral resuscitation. This work, which is likely to have major implications for the treatment of patients with head trauma, was done in collaboration with Dr. Peggy Knudson, Associate Professor of Surgery and Director of the San Francisco Injury Center at SFGH, and Dr. Lawrence Pitts, Professor of Neurological Surgery at UCSF. "By preventing episodes of hypoxia, we can really improve the outcome of patients with head injury," says Dr. Manley, who believes the future treatment of head injury will move from the intensive care unit to the prehospital setting. Dr. Manley also serves as head-injury trainer for San Francisco paramedics.

Andrew Metzger, a graduate of the UCSF School of Medicine and also a 1998 graduate of the neurological surgery residency program, has won three prestigious awards in neurological surgery. The Preuss Resident Research Award was accorded him by the American Association of Neurological Surgeons and Congress of Neurological Surgeons Joint Section on Tumors for his paper “Chromosome 11 abnormalities are the most frequent of multiple aberrations detected in pituitary adenomas by comparative genomic hybridization.” He was also the recipient of the Resident Award at the 1997 Annual Meeting of the Congress of Neurological Surgeons for his paper “Malignant meningiomas frequently lose multiple chromosomal regions in addition to 22q: putative meningioma progression loci detected by comparative genomic hybridization.” Dr. Metzger’s work on the comparative genomic hybridization analyses of glioblastoma long-term survivors, low-grade gliomas, malignant meningiomas, and pituitary adenomas, “MEN-1 gene mutation analysis in pituitary adenomas,” has earned him the Edwin Boldrey Resident Research Award from the San Francisco Neurological Society. Dr. Metzger’s work was done with Dr. Burt Feuerstein of the Division of Molecular Cytometry, Department of Laboratory Medicine, and BTRC and Dr. Charles B. Wilson of the Department of Neurological Surgery and BTRC at UCSF. Used in the laboratory for years, but it is uncertain whether it is safe for clinical use as the drug stimulates seizures and may damage the hippocampus, which mediates short-term memory. One strategy for the safe clinical use of selective neurotoxins would be to find a pharmacologic rescue agent that would prevent seizures and, in the case of poor clinical results, reverse damage before it was permanent. Dr. Lieberman and Dr. Nicholas Barbaro are investigating whether LY293558, an antagonist to kainic acid, might be used in this fashion and hope to develop their paradigm of reversible brain lesioning, which may be applied to Parkinson’s disease and other neurologic conditions in which brain lesioning is the mainstay of surgical treatment.

Dr. Geoff Manley

OUTCOME OF PATIENTS WITH HEAD INJURY

Dr. Geoff Manley

BY PREVENTING EPISODES OF HYPOXIA, WE CAN REALLY IMPROVE THE OUTCOME OF PATIENTS WITH HEAD INJURY
Martin C. Holland MD. Assistant Clinical Professor of Neurological Surgery. Dr. Holland is Co-Director of the Neurosurgical CNS Injury program at San Francisco General Hospital. Dr. Holland has had fellowship training in skullbase and neurovascular neurosurgery at the Barrow Neurological Institute. His clinical specialty interests include the management of head and spinal injury and neurovascular and skull base surgery. His particular research interests lie in traumatic brain injury and its repair. Recent investigations have included study of axonal regeneration in a crush model of optic nerve injury in rats and the immunochemical localization of angiogenic factors in a rat model of dural AVMs.

Michael Lawton MD. Assistant Professor of Neurological Surgery and Chief of the Cerebrovascular Disease Program, Dr. Lawton has fellowship training in cerebrovascular and skull base surgery and specializes in the surgical treatment of aneurysms, arteriovenous malformations, and fistulas. He is also on the faculty of UCSF’s Stroke Service. He recently received the Young Neurosurgeon Award from the World Federation of Neurosurgical Societies and International Congress of Neurological Surgery.

David M. McKalip MD. Assistant Professor of Neurological Surgery. Dr. McKalip is the Co-Director of the Neurosurgical CNS Injury program at San Francisco General Hospital. His clinical specialty interests include the management of head and spine injury and critical care of neurosurgical patients. A member of the editorial board of Neurosurgery/On Call, he has designed multiple applications for neurosurgery on the World Wide Web. His current laboratory work includes development of strategies to promote regeneration in the CNS through gene transfer technology.

Warwick Peacock MD. Professor of Neurological Surgery and Chief of the Pediatric Neurological Surgery Program. Dr. Peacock has an international reputation in the treatment of all types of pediatric neurosurgical disorders and as an expert in the surgical treatment of intractable epilepsy. His key research interests are in neurophysiology and epilepsy mechanisms. Dr. Peacock is internationally recognized for developing a safe, effective surgical procedure now used widely to treat spasticity in certain children with cerebral palsy. The procedure also may be effective for children and adults who have spasticity from multiple sclerosis or spinal-cord injury.

Russell O. Pieper PhD. Dr. Pieper, an Associate Professor and a principal investigator in the BTRC, has extensively studied the molecular biologic basis of cancer, including the influence of alkyltransferase structure on function and the chromatin structure and control of alkyltransferase expression.

Seven faculty members have recently joined our Department.

Michael Lawton MD. Assistant Professor of Neurological Surgery and Chief of the Cerebrovascular Disease Program, Dr. Lawton has fellowship training in cerebrovascular and skull base surgery and specializes in the surgical treatment of aneurysms, arteriovenous malformations, and fistulas. He is also on the faculty of UCSF’s Stroke Service. He recently received the Young Neurosurgeon Award from the World Federation of Neurosurgical Societies and International Congress of Neurological Surgery.

David M. McKalip MD. Assistant Professor of Neurological Surgery. Dr. McKalip is the Co-Director of the Neurosurgical CNS Injury program at San Francisco General Hospital. His clinical specialty interests include the management of head and spine injury and critical care of neurosurgical patients. A member of the editorial board of Neurosurgery/On Call, he has designed multiple applications for neurosurgery on the World Wide Web. His current laboratory work includes development of strategies to promote regeneration in the CNS through gene transfer technology.

Warwick Peacock MD. Professor of Neurological Surgery and Chief of the Pediatric Neurological Surgery Program. Dr. Peacock has an international reputation in the treatment of all types of pediatric neurosurgical disorders and as an expert in the surgical treatment of intractable epilepsy. His key research interests are in neurophysiology and epilepsy mechanisms. Dr. Peacock is internationally recognized for developing a safe, effective surgical procedure now used widely to treat spasticity in certain children with cerebral palsy. The procedure also may be effective for children and adults who have spasticity from multiple sclerosis or spinal-cord injury.

Russell O. Pieper PhD. Dr. Pieper, an Associate Professor and a principal investigator in the BTRC, has extensively studied the molecular biologic basis of cancer, including the influence of alkyltransferase structure on function and the chromatin structure and control of alkyltransferase expression.

Recent work concerns the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Down-regulation of MGMT expression is critical to strategies for sensitizing tumors to the therapeutic potential of the chloroethyl nitrosourea, the most consistently effective drugs used to treat brain tumors. Research into regulation of MGMT expression at the gene, mRNA, and protein levels has led to development of inhibitors of MGMT action and better understanding of regulation and protein structure and function.

William S. Rosenberg MD. Assistant Professor and a member of the Neuropatient Disorders Program, Dr. Rosenberg has clinical interests in spinal surgery, including spinal implants and implementation, and in neurotrauma, including the management of intracranial pressure and ultrasonic monitoring of intracranial changes in head-injured patients. His research interests range from computational neurobiology to immunology/virology and molecular neuroscience and neurogenetics. His most recent work has concerned the role of tau proteins in traumatic brain injury, and he has also reported the use of ultrasonic fingerprinting noninvasive detection of acute intracranial mass lesions.

Phillip A. Starr MD PhD. Assistant Professor of Neurological Surgery and Chief of Neurological Surgery at the San Francisco Veterans Affairs Hospital & Medical Center (SFVAMC). Dr. Starr has particular clinical interests in the area of stereotactic and functional neurological surgery and specialty interests in the area of movement disorders. He has fellowship training in microelectrode-guided surgery of movement disorders, and with colleagues at UCSF he has recently initiated microelectrode-guided pallidotomy for Parkinson’s disease at the SFVAMC. Dr. Starr’s primary research focus is on the neurophysiology and therapy of movement disorders, with recent research concerning the electrophysiologic studies of the basal ganglia in movement disorders and fetal cell transplantation for Parkinsonism.

Evrnen Keles MD, formerly with the Department of Neurological Surgery at the University of Washington in Seattle, has joined the UCSF neurological surgery department as a visiting researcher for 2 years. Dr. Keles’ home is in Turkey.
Faculty Achievements

Mitchel S. Berger MD has been elected to the Society of Neurological Surgeons and the American Academy of Neurological Surgeons. Dr. Berger is currently President of the Society for Neuro-Oncology and Vice President of the Congress of Neurological Surgeons.

Dennis F. Deen PhD has been named The Berthold and Belle N. Guggenhime Professor in Neurological Surgery. Dr. Deen is Professor of Neurological Surgery and Radiation Oncology and a principal investigator in the Brain Tumor Research Center.

Mark A. Israel MD has been named The Kathleen M. Plant Distinguished Professor in Neurological Surgery. The distinguished professorship honors a dedicated and generous supporter of brain tumor research. Dr. Israel is Professor of Neurological Surgery and Pediatrics and director of the Preuss Laboratory and a principal investigator in the Brain Tumor Research Center.

Glenn Gobbel DVM PhD has been awarded a FIRST Award from the National Institutes of Health (NIH) to study “The role of DNA damage in neuronal injury.” Dr. Gobbel has also been nominated by the National Institute of Neurological Disease and Stroke (NINDS) for the President’s Young Investigator Award.

Lawrence H. Pitts MD, Professor of Neurological Surgery, was selected by UCSF’s Academic Senate Committee on Committees to become Vice Chairman of the San Francisco Division of the University of California Academic Senate and is completing his first year in that position. He will become UCSF’s Academic Senate Chairman for 2 years beginning August 1999.

Phillip A. Starr MD PhD has been awarded a research grant from the American Parkinson’s Disease Association. During the past year, Dr. Starr was the invited guest of honor at the Japanese Society of Functional Neurosurgery in Osaka, Japan.

Upcoming Events at UCSF

Society for Neuro-Oncology
The annual meeting of the Society for Neuro-Oncology (SNO), to be held on the 13-15 November 1998, will be hosted by UCSF this year, with Dr. Mitchel Berger at UCSF as the newly elected president of the Society. Neurological Surgery faculty members Dr. Susan Chang, head of the local arrangements committee, together with Dr. Michael McDermott, have helped to coordinate the meeting at the Pan Pacific Hotel in San Francisco. Just preceding the main SNO meeting, on Thursday, November 12, a mini-symposium will be held consisting of a morning session devoted to pediatric neuro-oncology updates and an afternoon session discussing low-grade gliomas. The main meeting this year promises to be better than ever, with double the number of abstracts over those submitted for last year’s meeting. Dr. Frank McCormick, Director of the Cancer Research Center at UCSF, will be the guest lecturer on Friday. The award for Clinical Excellence in Neuro-oncology will be presented during the main part of the meeting. The social program for the conference will include an informal Chinese banquet on Friday evening, followed by a more formal dinner on Saturday at the Pan Pacific Hotel. (Article contributed by Michael McDermott MD.)

Takao Hoshino Lecture
This lecture, which will take place on October 22, was established to recognize innovative work in basic science research. This year’s speaker is Dr. V. Peter Collins, MD, B.Ch, FRCPI, FRCPath, Chair of Histopathology and Morbid Anatomy at Cambridge University.

John E. Adams Lecture
This year’s lecturer is Marc Mayberg MD Professor and Chairman of Neurosurgery at the Cleveland Clinic Foundation. The lecture takes place on Thursday, November 19 at 4 PM in room N245.

Administrative Appointments
Jim Dawson has been appointed Chief Administrative Officer of the Department of Neurological Surgery. Jim, who comes to UCSF from New England, joined the Department in January. Also in the administrative news is Lisa Gerrick, who was promoted to Senior Analyst as of February 1998.

Janet Corroo RN is the recipient of the Special Award for Nursing Education presented by the Nursing Department of UCSF.

Jane Rabbitt RN has received the Star Performance Award: Silver Level for outstanding contributions to the Department.
Academic and Clinical Conferences

Monday
- Resident Research Conference fourth Monday of every month

Tuesday
- Nerve Injury Conference every other Tuesday
- Boldrey Neuropathology Conference every Tuesday

Wednesday
- Journal Club first Wednesday
- Adult Spinal Radiology/Surgery Conference second & fourth Wednesdays

Thursday
- Neurosurgery Critical Care Rounds weekly
- Pediatric Neuroradiology/Neurosurgery Conference weekly
- Cerebrovascular Case Conference first & third Thursdays
- Neuro-Oncology Case Conference second Thursday
- BTRC Conference weekly
- Neurosurgery/Neuroradiology Correlation Conference weekly
- Neurosurgical Anatomy second Thursday
- Neuroscience and Neuroanatomy third Thursday
- Neuroradiology Conference first, second, & fourth Thursdays
- Neuro-Oncology Conference weekly
- Epilepsy Case Conference first Thursday
- Radiosurgery Conference weekly
- Neuroradiology Grand Rounds weekly
- Topic Review: Neurorsurgery Grand Rounds first, second, & third Thursdays
- UCSF/MT ZION/SFGH/VAMC Morbidity and Mortality Conference fourth Thursday
- Working Conference: Case Presentations first, second, & third Thursdays

For Conference Information Call 415.502.7673

Sharon Lamb Awarded The UCSF Department of Neurological Surgery Distinguished Service Award

As a clinical nurse in Neurological Surgery since 1980 and now with the Department of Nursing at UCSF, Sharon Anne Lamb RN has the respect, appreciation, admiration, and affection of patients and colleagues alike. She was instrumental in a reconfiguration of the Department's patient-care services, excelling as she has consistently in providing efficient, effective, intuitive support to the neurosurgeons with whom she has worked as well as intelligent, knowledgeable, compassionate care to patients and their families. An outstanding educator, she has been active in nursing education at UCSF and with the Annual Neurosurgical Postgraduate Course for Nurses, the American Association of Neuroscience Nurses, and the Nursing Section of the American Association of Neurological Surgeons. She has made pivotal contributions to research, and is a consultant at UCSF and nationally through professional associations and the National Brain Tumor Foundation (NBTF), which she recently served as President. Her work as a volunteer with the NBTF and the Hydrocephalus Foundation further distinguish her and her exceptional contribution as an emissary of UCSF to patients, their families, and the community.

Ms. Lamb has served UCSF and the Department with energy, professional excellence and expertise, and an exceptional dedication of time and talent to patient care and teaching. As an expression of their esteem, the faculty were honored to extend to her the Distinguished Service Award.
Selected Recent Publications from the Department of Neurological Surgery

Gupta N, Hua LK, Deen DF. Cytoskeletal and cell cycle effects of paclitaxel when used as a single agent and in combination with ionizing radiation. LRDDP 1:265, 1995-1996

Prados MD, Russo C. Chemotherapy of brain tumors. Seminars in Surgical Oncology, 1997

Progress is being made in the efforts of UCSF and Stanford Radiosurgery to develop a UCSF-Stanford Health Care Radiosurgery Program that can better educate community physicians primarily about the indications for, results of, and the risk and potential benefits of radiosurgery and other forms of stereotactic radiation-based therapy for intracranial pathologies. The sites plan to collaborate with prospective clinical trials, first with cerebral metastases and later with malignant gliomas.

In a collaboration among Drs. Phillip Starr, Nicholas Barbaro, Michael Aminoff, and Bill Marks, clinical programs are being developed for microelectrode-guided surgery for movement disorders at both Moffitt Hospital on the UCSF campus and at the San Francisco VA Medical Center. The first microelectrode-guided pallidotomy for Parkinson’s disease at the VA was performed in late spring of 1998.

This fall the Philadelphia publisher WB Saunders will announce publication of the Textbook of Gliomas edited by Mitchel S. Berger and Charles B. Wilson. This book was developed and written with the intention of tracking the advances in neuro-oncology in an interdisciplinary text that would offer clinicians, basic scientists, and allied health care providers a comprehensive view of emerging concepts in the hope that by capitalizing on these advances, we may make further and rapid progress in translational neuro-oncology.